Computational Biology
Dublin Core
Title
Computational Biology
Description
What is Computational Biology
Source: Wikipedia.org article, adapted under https://creativecommons.org/licenses/by-sa/3.0/ license.
Computational biology involves the development and application of data-analytical and theoretical methods, mathematical modeling and computational simulation techniques to the study of biological, behavioral, and social systems. The field is broadly defined and includes foundations in computer science, applied mathematics, animation, statistics, biochemistry, chemistry, biophysics, molecular biology, genetics, genomics, ecology, evolution, anatomy, neuroscience, and visualization.
Computational biology is different from biological computation, which is a subfield of computer science and computer engineering using bioengineering and biology to build computers, but is similar to bioinformatics, which is an interdisciplinary science using computers to store and process biological data.
Computational Biology, sometimes referred to as bioinformatics, is the science of using biological data to develop algorithms and relations among various biological systems. Prior to the advent of computational biology, biologists were unable to have access to large amounts of data. Researchers were able to develop analytical methods for interpreting biological information, but were unable to share them quickly among colleagues.
Bioinformatics began to develop in the early 1970s. It was considered the science of analyzing informatics processes of various biological systems. At this time, research in artificial intelligence was using network models of the human brain in order to generate new algorithms. This use of biological data to develop other fields pushed biological researchers to revisit the idea of using computers to evaluate and compare large data sets. By 1982, information was being shared amongst researchers through the use of punch cards. The amount of data being shared began to grow exponentially by the end of the 1980s. This required the development of new computational methods in order to quickly analyze and interpret relevant information.
Since the late 1990s, computational biology has become an important part of developing emerging technologies for the field of biology. The terms computational biology and evolutionary computation have a similar name, but are not to be confused. Unlike computational biology, evolutionary computation is not concerned with modeling and analyzing biological data. It instead creates algorithms based on the ideas of evolution across species. Sometimes referred to as genetic algorithms, the research of this field can be applied to computational biology. While evolutionary computation is not inherently a part of computational biology, Computational evolutionary biology is a subfield of it.
Computational biology has been used to help sequence the human genome, create accurate models of the human brain, and assist in modeling biological systems.
Source: Wikipedia.org article, adapted under https://creativecommons.org/licenses/by-sa/3.0/ license.
Computational biology involves the development and application of data-analytical and theoretical methods, mathematical modeling and computational simulation techniques to the study of biological, behavioral, and social systems. The field is broadly defined and includes foundations in computer science, applied mathematics, animation, statistics, biochemistry, chemistry, biophysics, molecular biology, genetics, genomics, ecology, evolution, anatomy, neuroscience, and visualization.
Computational biology is different from biological computation, which is a subfield of computer science and computer engineering using bioengineering and biology to build computers, but is similar to bioinformatics, which is an interdisciplinary science using computers to store and process biological data.
Computational Biology, sometimes referred to as bioinformatics, is the science of using biological data to develop algorithms and relations among various biological systems. Prior to the advent of computational biology, biologists were unable to have access to large amounts of data. Researchers were able to develop analytical methods for interpreting biological information, but were unable to share them quickly among colleagues.
Bioinformatics began to develop in the early 1970s. It was considered the science of analyzing informatics processes of various biological systems. At this time, research in artificial intelligence was using network models of the human brain in order to generate new algorithms. This use of biological data to develop other fields pushed biological researchers to revisit the idea of using computers to evaluate and compare large data sets. By 1982, information was being shared amongst researchers through the use of punch cards. The amount of data being shared began to grow exponentially by the end of the 1980s. This required the development of new computational methods in order to quickly analyze and interpret relevant information.
Since the late 1990s, computational biology has become an important part of developing emerging technologies for the field of biology. The terms computational biology and evolutionary computation have a similar name, but are not to be confused. Unlike computational biology, evolutionary computation is not concerned with modeling and analyzing biological data. It instead creates algorithms based on the ideas of evolution across species. Sometimes referred to as genetic algorithms, the research of this field can be applied to computational biology. While evolutionary computation is not inherently a part of computational biology, Computational evolutionary biology is a subfield of it.
Computational biology has been used to help sequence the human genome, create accurate models of the human brain, and assist in modeling biological systems.
Source
http://youtu.be/aCoQCHmg_hM
Publisher
The Audiopedia
published via YouTube.com
published via YouTube.com
Date
2017-02-20T13:30:00.000Z
Rights
Creative Commons License
This video represents licensed content on YouTube, meaning that the content has been claimed by a YouTube content partner.
This video represents licensed content on YouTube, meaning that the content has been claimed by a YouTube content partner.
Moving Image Item Type Metadata
Imported Thumbnail
https://i.ytimg.com/vi/aCoQCHmg_hM/default.jpg
Files
Collection
Citation
“Computational Biology,” Open Educational Resource (OER) - USK Library, accessed September 12, 2024, http://uilis.usk.ac.id/oer/items/show/253.